4,601 research outputs found

    How to make a triangulation of S^3 polytopal

    Full text link
    We introduce a numerical isomorphism invariant p(T) for any triangulation T of S^3. Although its definition is purely topological (inspired by the bridge number of knots), p(T) reflects the geometric properties of T. Specifically, if T is polytopal or shellable then p(T) is `small' in the sense that we obtain a linear upper bound for p(T) in the number n=n(T) of tetrahedra of T. Conversely, if p(T) is `small' then T is `almost' polytopal, since we show how to transform T into a polytopal triangulation by O((p(T))^2) local subdivisions. The minimal number of local subdivisions needed to transform T into a polytopal triangulation is at least p(T)3n−n−2\frac{p(T)}{3n}-n-2. Using our previous results [math.GT/0007032], we obtain a general upper bound for p(T) exponential in n^2. We prove here by explicit constructions that there is no general subexponential upper bound for p(T) in n. Thus, we obtain triangulations that are `very far' from being polytopal. Our results yield a recognition algorithm for S^3 that is conceptually simpler, though somewhat slower, as the famous Rubinstein-Thompson algorithm.Comment: 24 pages, 17 figures. Final versio

    Complexity of triangulations of the projective space

    Full text link
    It is known that any two triangulations of a compact 3-manifold are related by finite sequences of certain local transformations. We prove here an upper bound for the length of a shortest transformation sequence relating any two triangulations of the 3-dimensional projective space, in terms of the number of tetrahedra.Comment: 10 pages, 3 figures. Revised version, to appear in Top. App

    Persistent homology of groups

    Full text link
    We introduce and investigate notions of persistent homology for p-groups and for coclass trees of p-groups. Using computer techniques we show that persistent homology provides fairly strong homological invariants for p-groups of order at most 81. The strength of these invariants, and some elementary theoretical properties, suggest that persistent homology may be a useful tool in the study of prime-power groups.Comment: 12 pages, 6 figure

    The computation of the cohomology rings of all groups of order 128

    Get PDF
    We describe the computation of the mod-2 cohomology rings of all 2328 groups of order 128. One consequence is that all groups of order less than 256 satisfy the strong form of Benson's Regularity Conjecture.Comment: 15 pages; revised versio
    • …
    corecore